58 lines
1.4 KiB
Matlab

function [a, b, k, n] = min_bisection(fun_expr, alpha, beta, epsilon, lambda)
% Bisection method for finding the local minimum of a function.
%
% fun_expr: (symbolic expression over x) The symbolic expression of the
% objective function
% alpha: (number) The starting point of the interval in which we seek
% for minimum
% beta: (number) The ending point of the interval in which we seek
% for minimum
% epsilon: (number) The epsilon value (distance from midpoint)
% lambda: (number) The lambda value (accuracy)
%
% return:
% a: (vector) Starting points of the interval for each iteration
% b: (vector) Ending points of the interval for each iteration
% k: (number) The number of iterations
% n: (number) The calls of objective function fun_expr
%
% Error checking
if alpha > beta || 2*epsilon >= lambda || lambda <= 0
error ('Input criteria not met')
end
% Init
a = alpha;
b = beta;
n = 0;
fun = matlabFunction(fun_expr);
% wrapper call count function
function r = count_fun(x)
n = n + 1;
r = fun(x);
end
k=1;
while b(k) - a(k) > lambda
% bisect [a,b]
mid = (a(k) + b(k)) / 2;
x_1 = mid - epsilon;
x_2 = mid + epsilon;
% set new search interval
k = k + 1;
if count_fun(x_1) < count_fun(x_2)
a(k) = a(k-1);
b(k) = x_2;
else
a(k) = x_1;
b(k) = b(k-1);
end
end
end