55 lines
1.3 KiB
Matlab

function [a, b, N] = min_fibonacci(fun_expression, alpha, beta, epsilon, lambda)
%
% Use Binet's formula instead of matlab's recursive fibonacci
% implementation
fib = @(n) ( ((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n * sqrt(5)) );
% Error checking
if lambda <= 0 || epsilon <= 0
error ('Convergence criteria not met')
end
% Init variables
a = alpha;
b = beta;
fun = matlabFunction(fun_expression);
% calculate number of iterations
N=0;
while fibonacci(N) < (b(1) - a(1)) / lambda
N = N + 1;
end
% calculate x1, x2 of the first iteration, since the following iteration
% will not require to calculate both
x_1 = a(1) + (fib(N-2) / fib(N)) * (b(1) - a(1));
x_2 = a(1) + (fib(N-1) / fib(N)) * (b(1) - a(1));
% All but the last calculation
for k = 1:N-2
% set new search interval
if fun(x_1) < fun(x_2)
a(k+1) = a(k);
b(k+1) = x_2;
x_2 = x_1;
x_1 = a(k+1) + (fib(N-k-2) / fib(N-k)) * (b(k+1) - a(k+1));
else
a(k+1) = x_1;
b(k+1) = b(k);
x_1 = x_2;
x_2 = a(k+1) + (fib(N-k-1) / fib(N-k)) * (b(k+1) - a(k+1));
end
end
% Last calculation
x_2 = x_1 + epsilon;
if fun(x_1) < fun(x_2)
a(N) = a(N-1);
b(N) = x_1;
else
a(N) = x_1;
b(N) = b(N-1);
end