- Add output parameter to methods for objective function calls - Adjust the code to reduce objective function calls to some methods
89 lines
2.6 KiB
Matlab
89 lines
2.6 KiB
Matlab
function [] = interval_over_iterations(method)
|
|
% Calculate and plot the [a,b] interval over the iterations for different
|
|
% lambda values (min, mid, max)
|
|
%
|
|
% method: the minimum calculation method, one of:
|
|
% * bisections
|
|
% * golden_section
|
|
% * fibonacci
|
|
% * bisection_der
|
|
% return:
|
|
% none
|
|
%
|
|
|
|
|
|
% Load the functions and interval
|
|
GivenEnv;
|
|
|
|
fig_dir = 'figures';
|
|
if ~exist(fig_dir, 'dir')
|
|
mkdir(fig_dir);
|
|
end
|
|
|
|
% Setup
|
|
% ========================
|
|
%
|
|
% We need to test against the same lambda values for all the methods in
|
|
% order to compare them. And since epsilon (which is related to lambda)
|
|
% was given for the bisection method, we base our calculations to that.
|
|
%
|
|
%
|
|
% epsilon: e = 0.001
|
|
% lambda: l > 2e =>
|
|
% lambda_min: 0.0021
|
|
% lambda_max: 0.1
|
|
% N: 3 points (3 lambda values min-mid-max)
|
|
|
|
N = 3;
|
|
epsilon = 0.001;
|
|
lambda_min = 0.0021;
|
|
lambda_max = 0.1;
|
|
lambda = linspace(lambda_min, lambda_max, N);
|
|
k = zeros(1, N); % preallocate k
|
|
n = zeros(1, N); % preallocate n
|
|
|
|
|
|
%
|
|
% Call the minimum calculation method for each lambda value for each
|
|
% function and keep the number of iterations needed.
|
|
% Then Plot the [a,b] interval over iterations for each lambda for each
|
|
% function.
|
|
%
|
|
% note: In order to use the same method call for all methods, we force a
|
|
% common interface for minimum method functions. Thus some arguments
|
|
% will not be needed for some methods (epsilon is not needed for
|
|
% bisection _der for example).
|
|
%
|
|
|
|
disp(" ");
|
|
for i = 1:length(funs)
|
|
figure('Name', "interval_over_iterations_" + char(method) + "_fun" + i, 'NumberTitle', 'off');
|
|
set(gcf, 'Position', [100, 100, 1280, 720]); % Set the figure size to HD
|
|
for j = 1:N
|
|
[a, b, k(j), n(j)] = method(funs(i), a_0, b_0, epsilon, lambda(j));
|
|
|
|
fprintf('%20s(%34s ): [a, b]= [%f, %f], @lambda=%f, iterations= %d\n', ...
|
|
char(method), char(funs(i)), a(end), b(end), lambda(j), k(j) );
|
|
|
|
subplot(length(funs), 1, j);
|
|
plot(1:length(a), a, 'ob');
|
|
hold on
|
|
plot(1:length(b), b, '*r');
|
|
if j == 1
|
|
title(titles(i), 'Interpreter', 'latex', 'FontSize', 16);
|
|
end
|
|
xlabel("Iterations @lambda=" + lambda(j));
|
|
ylabel('[a_k, b_k]');
|
|
end
|
|
|
|
% Print and save the figure
|
|
%fig_epsc = fullfile(fig_dir, "interval_over_iterations_" + char(method) + "_fun" + i + ".epsc");
|
|
fig_png = fullfile(fig_dir, "interval_over_iterations_" + char(method) + "_fun" + i + ".png");
|
|
|
|
%print(gcf, fig_epsc, '-depsc', '-r300');
|
|
print(gcf, fig_png, '-dpng', '-r300');
|
|
|
|
close(gcf);
|
|
end
|
|
|