39 lines
1.4 KiB
Matlab
39 lines
1.4 KiB
Matlab
function [x_vals, f_vals, k] = method_SteepDesc(f, grad_f, xk, tol, max_iter, mode)
|
|
% f: Objective function
|
|
% grad_f: Gradient of the function
|
|
% xk: Initial point [x0; y0]
|
|
% tol: Tolerance for stopping criterion
|
|
% max_iter: Maximum number of iterations
|
|
|
|
% x_vals: Vector with the (x,y) values until minimum
|
|
% f_vals: Vector with f(x,y) values until minimum
|
|
% k: Number of iterations
|
|
|
|
if strcmp(mode, 'armijo') == 1
|
|
gamma_f = @(f, grad_f, dk, xk) gamma_armijo(f, grad_f, dk, xk);
|
|
elseif strcmp(mode, 'minimized') == 1
|
|
gamma_f = @(f, grad_f, dk, xk) gamma_minimized(f, grad_f, dk, xk);
|
|
else % mode == 'fixed'
|
|
gamma_f = @(f, grad_f, dk, xk) gamma_fixed(f, grad_f, dk, xk);
|
|
end
|
|
|
|
% Storage for iterations, begin with the first point
|
|
x_vals = xk;
|
|
f_vals = f(xk);
|
|
for k = 1:max_iter
|
|
% Check for convergence
|
|
if norm(grad_f(xk)) < tol
|
|
break;
|
|
end
|
|
dk = - grad_f(xk); % Steepset descent direction
|
|
|
|
gk = gamma_f(f, grad_f, dk, xk); % Calculate gamma
|
|
|
|
x_next = xk + gk * dk; % Update step
|
|
f_next = f(x_next);
|
|
|
|
xk = x_next; % Update point
|
|
x_vals = [x_vals, x_next]; % Store values
|
|
f_vals = [f_vals, f_next]; % Store function values
|
|
end
|
|
end |