71 lines
1.9 KiB
Matlab
71 lines
1.9 KiB
Matlab
function [a, b, k, n] = min_golden_section(fun_expression, alpha, beta, epsilon, lambda)
|
|
% Golden section method for finding the local minimum of a function.
|
|
%
|
|
% fun_expr: (symbolic expression over x) The symbolic expression of the
|
|
% objective function
|
|
% alpha: (number) The starting point of the interval in which we seek
|
|
% for minimum
|
|
% beta: (number) The ending point of the interval in which we seek
|
|
% for minimum
|
|
% epsilon: (number) The epsilon value
|
|
% **note:**
|
|
% epsilon in not used in this method, but it is part of the
|
|
% method calling interface.
|
|
% lambda: (number) The lambda value (accuracy)
|
|
%
|
|
% return:
|
|
% a: (vector) Starting points of the interval for each iteration
|
|
% b: (vector) Ending points of the interval for each iteration
|
|
% k: (number) The number of iterations
|
|
% n: (number) The calls of objective function fun_expr
|
|
%
|
|
|
|
% Error checking
|
|
if alpha > beta || lambda <= 0
|
|
error ('Input criteria not met')
|
|
end
|
|
|
|
% Init variables
|
|
gamma = 0.618;
|
|
a = alpha;
|
|
b = beta;
|
|
n = 0;
|
|
fun = matlabFunction(fun_expression);
|
|
|
|
% wrapper call count function
|
|
function r = count_fun(x)
|
|
n = n + 1;
|
|
r = fun(x);
|
|
end
|
|
|
|
% calculate x1, x2 of the first iteration, since the following iteration
|
|
% will not require to calculate both
|
|
k=1;
|
|
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
|
|
x_2 = a(k) + gamma*(b(k) - a(k));
|
|
|
|
f1 = count_fun(x_1);
|
|
f2 = count_fun(x_2);
|
|
while b(k) - a(k) > lambda
|
|
% set new search interval
|
|
k = k + 1;
|
|
if f1 <= f2
|
|
a(k) = a(k-1);
|
|
b(k) = x_2;
|
|
x_2 = x_1;
|
|
f2 = f1;
|
|
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
|
|
f1 = count_fun(x_1);
|
|
else
|
|
a(k) = x_1;
|
|
b(k) = b(k-1);
|
|
x_1 = x_2;
|
|
f1 = f2;
|
|
x_2 = a(k) + gamma*(b(k) - a(k));
|
|
f2 = count_fun(x_2);
|
|
end
|
|
end
|
|
|
|
end
|
|
|