50 lines
1.5 KiB
Matlab

function [x_vals, f_vals, k] = method_lev_mar(f, grad_f, hessian_f, m, x0, tol, max_iter, mode)
% f: Objective function
% grad_f: Gradient of the function
% hessian_f: Hessian of the function
% x0: Initial point [x0, y0]
% tol: Tolerance for stopping criterion
% max_iter: Maximum number of iterations
% x_vals: Vector with the (x,y) values until minimum
% f_vals: Vector with f(x,y) values until minimum
% k: Number of iterations
if strcmp(mode, 'armijo') == 1
gamma_f = @(f, grad_f, x0) gamma_armijo(f, grad_f, x0);
elseif strcmp(mode, 'minimized') == 1
gamma_f = @(f, grad_f, x0) gamma_minimized(f, grad_f, x0);
else % mode == 'fixed'
gamma_f = @(f, grad_f, x0) gamma_fixed(f, grad_f, x0);
end
x_vals = x0; % Store iterations
f_vals = f(x0(1), x0(2));
for k = 1:max_iter
grad = grad_f(x0(1), x0(2));
% Check for convergence
if norm(grad) < tol
break;
end
hess = hessian_f(x0(1), x0(2));
mI = m * eye(size(hess));
% Solve for search direction using Newton's step
dk = - inv(hess + mI) * grad;
% Calculate gamma
gamma = gamma_f(f, grad_f, x0);
x_next = x0 + gamma * dk'; % Update step
f_next = f(x_next(1), x_next(2));
x0 = x_next; % Update point
x_vals = [x_vals; x_next]; % Store values
f_vals = [f_vals; f_next]; % Store function values
end
end