OptimizationTechniques/Work 1/scripts/min_bisection_der.m
Christos Choutouridis d42725109a Report started
- Add output parameter to methods for objective function calls
 - Adjust the code to reduce objective function calls to some methods
2024-11-08 10:03:55 +02:00

58 lines
1.6 KiB
Matlab

function [a, b, k, n] = min_bisection_der(fun_expression, alpha, beta, epsilon, lambda)
% Bisection using derivatives method for finding the local minimum of a
% function.
%
% fun_expr: (symbolic expression over x) The symbolic expression of the
% objective function
% alpha: (number) The starting point of the interval in which we seek
% for minimum
% beta: (number) The ending point of the interval in which we seek
% for minimum
% epsilon: (number) The epsilon value
% **note:**
% epsilon in not used in this method, but it is part of the
% method calling interface.
% lambda: (number) The lambda value (accuracy)
%
% return:
% a: (vector) Starting points of the interval for each iteration
% b: (vector) Ending points of the interval for each iteration
% k: (number) The number of iterations
% n: (number) The calls of objective function fun_expr
%
% Error checking
if alpha > beta || lambda <= 0
error ('Input criteria not met')
end
% Init output vectors
a = alpha;
b = beta;
dfun = matlabFunction(diff(fun_expression));
k=1;
while b(k) - a(k) > lambda
% bisect [a,b]
x_mid = (a(k) + b(k)) / 2;
% set new search interval
k = k + 1;
df = dfun(x_mid);
if df < 0
a(k) = x_mid;
b(k) = b(k-1);
elseif df > 0
a(k) = a(k-1);
b(k) = x_mid;
else % df == 0
a(k) = x_mid;
b(k) = x_mid;
break;
end
end
% Update the objctive function calls. In this case the derivative of the
% function ;)
n = k;