49 lines
1.2 KiB
Matlab
49 lines
1.2 KiB
Matlab
function [a, b, k, n] = fmin_bisection(fun, alpha, beta, epsilon, lambda)
|
|
% Bisection method for finding the local minimum of a function.
|
|
%
|
|
% fun: The objective function
|
|
% alpha: (number) The starting point of the interval in which we seek
|
|
% for minimum
|
|
% beta: (number) The ending point of the interval in which we seek
|
|
% for minimum
|
|
% epsilon: (number) The epsilon value (distance from midpoint)
|
|
% lambda: (number) The lambda value (accuracy)
|
|
%
|
|
% return:
|
|
% a: (vector) Starting points of the interval for each iteration
|
|
% b: (vector) Ending points of the interval for each iteration
|
|
% k: (number) The number of iterations
|
|
% n: (number) The calls of objective function fun_expr
|
|
%
|
|
|
|
|
|
|
|
% Error checking
|
|
if alpha > beta || 2*epsilon >= lambda || lambda <= 0
|
|
error ('Input criteria not met')
|
|
end
|
|
|
|
% Init
|
|
a = alpha;
|
|
b = beta;
|
|
n = 0;
|
|
|
|
k=1;
|
|
while b(k) - a(k) > lambda
|
|
% bisect [a,b]
|
|
mid = (a(k) + b(k)) / 2;
|
|
x_1 = mid - epsilon;
|
|
x_2 = mid + epsilon;
|
|
|
|
% set new search interval
|
|
k = k + 1;
|
|
if fun(x_1) < fun(x_2)
|
|
a(k) = a(k-1);
|
|
b(k) = x_2;
|
|
else
|
|
a(k) = x_1;
|
|
b(k) = b(k-1);
|
|
end
|
|
end
|
|
|
|
end |