PDS/homework_2/include/utils.hpp

307 lines
10 KiB
C++

/**
* \file
* \brief Utilities header
*
* \author
* Christos Choutouridis AEM:8997
* <cchoutou@ece.auth.gr>
*/
#ifndef UTILS_HPP_
#define UTILS_HPP_
#include <vector>
#include <iostream>
#include <chrono>
#include <unistd.h>
#include <mpi.h>
//#include "matrix.hpp"
#include "config.h"
template <typename T> struct MPI_TypeMapper;
// Specializations for supported types
template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
template <> struct MPI_TypeMapper<unsigned int> { static MPI_Datatype getType() { return MPI_UNSIGNED; } };
template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
template <> struct MPI_TypeMapper<float> { static MPI_Datatype getType() { return MPI_FLOAT; } };
template <> struct MPI_TypeMapper<double> { static MPI_Datatype getType() { return MPI_DOUBLE; } };
template<typename TID = int>
struct MPI_t {
using ID_t = TID; // Export TID type (currently int defined by the standard)
void init(int *argc, char ***argv) {
// Initialize the MPI environment
MPI_Init(argc, argv);
initialized_ = true;
// Get the number of processes
int size_value, rank_value;
MPI_Comm_size(MPI_COMM_WORLD, &size_value);
MPI_Comm_rank(MPI_COMM_WORLD, &rank_value);
size_ = static_cast<ID_t>(size_value);
rank_ = static_cast<ID_t>(rank_value);
// Get the name of the processor
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
name_ = std::string (processor_name, name_len);
}
template<typename T>
void exchange(ID_t partner, const std::vector<T>& send_data, std::vector<T>& recv_data, int tag) {
using namespace std::string_literals;
MPI_Status status;
MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
int send_count = static_cast<int>(send_data.size());
int err = MPI_Sendrecv(
send_data.data(), send_count, datatype, partner, tag,
recv_data.data(), send_count, datatype, partner, tag,
MPI_COMM_WORLD, &status
);
if (err != MPI_SUCCESS) {
char err_msg[MPI_MAX_ERROR_STRING];
int msg_len;
MPI_Error_string(err, err_msg, &msg_len);
throw std::runtime_error("(MPI) MPI_Sendrecv() - " + std::string (err_msg) + '\n');
}
}
// Accessors
[[nodiscard]] ID_t rank() const noexcept { return rank_; }
[[nodiscard]] ID_t size() const noexcept { return size_; }
[[nodiscard]] const std::string& name() const noexcept { return name_; }
void finalize() {
// Finalize the MPI environment
initialized_ = false;
MPI_Finalize();
}
~MPI_t() {
// Finalize the MPI environment even on unexpected errors
if (initialized_)
MPI_Finalize();
}
private:
ID_t rank_{};
ID_t size_{};
std::string name_{};
bool initialized_{};
};
extern MPI_t<> mpi;
using mpi_id_t = MPI_t<>::ID_t;
template <typename Value_t>
struct ShadowedVec_t {
// STL requirements
using value_type = Value_t;
using iterator = typename std::vector<Value_t>::iterator;
using const_iterator = typename std::vector<Value_t>::const_iterator;
using size_type = typename std::vector<Value_t>::size_type;
// Default constructor
ShadowedVec_t() = default;
// Constructor from an std::vector
explicit ShadowedVec_t(const std::vector<Value_t>& vec)
: North(vec), South(), active(north) {
South.resize(North.size());
}
explicit ShadowedVec_t(std::vector<Value_t>&& vec)
: North(std::move(vec)), South(), active(north) {
South.resize(North.size());
}
// Copy assignment operator
ShadowedVec_t& operator=(const ShadowedVec_t& other) {
if (this != &other) { // Avoid self-assignment
North = other.North;
South = other.South;
active = other.active;
}
return *this;
}
// Move assignment operator
ShadowedVec_t& operator=(ShadowedVec_t&& other) noexcept {
if (this != &other) { // Avoid self-assignment
North = std::move(other.North);
South = std::move(other.South);
active = other.active;
// There is no need to zero out other since it is valid but in a non-defined state
}
return *this;
}
// Dispatch to active vector
Value_t& operator[](size_type index) { return getActive()[index]; }
const Value_t& operator[](size_type index) const { return getActive()[index]; }
Value_t& at(size_type index) { return getActive().at(index); }
const Value_t& at(size_type index) const { return getActive().at(index); }
void push_back(const Value_t& value) { getActive().push_back(value); }
void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
void pop_back() { getActive().pop_back(); }
Value_t& front() { return getActive().front(); }
const Value_t& front() const { return getActive().front(); }
Value_t& back() { return getActive().back(); }
const Value_t& back() const { return getActive().back(); }
iterator begin() { return getActive().begin(); }
const_iterator begin() const { return getActive().begin(); }
iterator end() { return getActive().end(); }
const_iterator end() const { return getActive().end(); }
size_type size() const { return getActive().size(); }
void resize(size_t new_size) {
North.resize(new_size);
South.resize(new_size);
}
void reserve(size_t new_capacity) {
North.reserve(new_capacity);
South.reserve(new_capacity);
}
[[nodiscard]] size_t capacity() const { return getActive().capacity(); }
[[nodiscard]] bool empty() const { return getActive().empty(); }
void clear() { getActive().clear(); }
void swap(std::vector<Value_t>& other) { getActive().swap(other); }
// Switching vectors
void switch_active() { active = (active == north) ? south : north; }
// Accessors
const std::vector<Value_t>& getNorth() const { return North; }
const std::vector<Value_t>& getSouth() const { return South; }
std::vector<Value_t>& getActive() {
return (active == north) ? North : South;
}
const std::vector<Value_t>& getActive() const {
return (active == north) ? North : South;
}
std::vector<Value_t>& getShadow() {
return (active == north) ? South : North;
}
const std::vector<Value_t>& getShadow() const {
return (active == north) ? South : North;
}
// Comparisons
bool operator== (const ShadowedVec_t& other) {
return getActive() == other.getActive();
}
bool operator!= (const ShadowedVec_t& other) {
return getActive() != other.getActive();
}
bool operator== (const std::vector<value_type>& other) {
return getActive() == other;
}
bool operator!= (const std::vector<value_type>& other) {
return getActive() != other;
}
private:
std::vector<Value_t> North{};
std::vector<Value_t> South{};
enum { north, south } active{north};
};
using distBuffer_t = ShadowedVec_t<distValue_t>;
extern distBuffer_t Data;
/*!
* A Logger for entire program.
*/
struct Log {
struct Endl {} endl; //!< a tag object to to use it as a new line request.
//! We provide logging via << operator
template<typename T>
Log &operator<<(T &&t) {
if (session.verbose) {
if (line_) {
std::cout << "[Log]: " << t;
line_ = false;
} else
std::cout << t;
}
return *this;
}
// overload for special end line handling
Log &operator<<(Endl e) {
(void) e;
if (session.verbose) {
std::cout << '\n';
line_ = true;
}
return *this;
}
private:
bool line_{true};
};
extern Log logger;
/*!
* A small timing utility based on chrono.
*/
struct Timing {
using Tpoint = std::chrono::steady_clock::time_point;
using microseconds = std::chrono::microseconds;
using milliseconds = std::chrono::milliseconds;
using seconds = std::chrono::seconds;
//! tool to mark the starting point
Tpoint start() noexcept { return start_ = std::chrono::steady_clock::now(); }
//! tool to mark the ending point
Tpoint stop() noexcept { return stop_ = std::chrono::steady_clock::now(); }
auto dt() noexcept {
return std::chrono::duration_cast<std::chrono::microseconds>(stop_ - start_).count();
}
//! tool to print the time interval
void print_dt(const char *what) noexcept {
if (session.timing) {
auto t = stop_ - start_;
if (std::chrono::duration_cast<microseconds>(t).count() < 10000)
std::cout << "[Timing]: " << what << ": "
<< std::to_string(std::chrono::duration_cast<microseconds>(t).count()) << " [usec]\n";
else if (std::chrono::duration_cast<milliseconds>(t).count() < 10000)
std::cout << "[Timing]: " << what << ": "
<< std::to_string(std::chrono::duration_cast<milliseconds>(t).count()) << " [msec]\n";
else
std::cout << "[Timing]: " << what << ": "
<< std::to_string(std::chrono::duration_cast<seconds>(t).count()) << " [sec]\n";
}
}
private:
Tpoint start_;
Tpoint stop_;
};
#endif /* UTILS_HPP_ */