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Overview

0 Parts A-C cover probabilistic modeling, Bayesian decision theory, and
k-NN classification.

G Part D focuses on multi-class model comparison and performance
analysis.

° A modular architecture and a systematic experimental methodology
are used throughout.
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Part A

Maximum Likelihood Estimation
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Maximum Likelihood Estimation

Probabilistic Model

e Data vectors are modeled probabilistically
e Gaussian assumption in R

e Parameters unknown p(x | 0) = ./\/(x |, X)

Multivariate Gaussian distribution

e Continuous probability density
e Shape controlled by covariance
e Orientation captures feature correlation

X = ! ex —lx— TS (x—
Nx 1) = g exp( 56— =7 e )
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Maximum Likelihood Estimation

Maximum Likelihood Estimation - Mean
e Parameters estimated from data

e Maximum Likelihood principle
e Mean captures central tendency

Maximum Likelihood estimation — Covariance

e Covariance captures variance and correlation
e Determines shape and orientation
e Estimated from centered data
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Maximum Likelihood Estimation

Implementation

Dataset loaded and split into classes

Mean vectors and covariance matrices estimated via MLE
Gaussian pdf evaluated on a 2D grid

Dedicated functions used for estimation, density evaluation, and
visualization

MLE implementation overview

mle_mean(), mle_covariance(): parameter estimation
estimate_gaussians_mle(): per-class Gaussian modeling
gaussian_pdf(), compute_gaussian_grid(): density evaluation
plot_gaussians_3d(): visualization of class-conditional densities
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Maximum Likelihood Estimation

Estimated Gaussian density (ML)

45 |

Estimated Gaussian density 40 A
35 A

e Density evaluated on a 2D grid

e High-density regions align with data 30

e Model reflects data structure

25

20 A

15 4

10 A

T T T T T T
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Maximum Likelihood Estimation

MLE Estimated 2D Gaussians (all classes)

3D visualization of estimated Gaussian densities

e Class-conditional Gaussian models
estimated via MLE

e Probability density visualized as a
surface over the feature space

e Highlights relative position, spread, and
overlap between classes

e Used as a qualitative tool to support
later classification analysis
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Part B

Parzen Window Estimator
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Parzen window

Parzen window estimator

e Density estimated by averaging kernel contributions
e Bandwidth h controls smoothing (bias-variance trade-off)
e e evaluate plx) at the sample points

p(x; h) = NhZK(

n=1
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Parzen window

Kernel functions

e Uniform (box) kernel
e Gaussian kernel

e Both integrate to 1 (valid pdf smoothing kernels)

Uniform Kernel

K(u) = {1, U] < §

0, otherwise
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Parzen window

Reference true pdf
e True pdf provided for evaluation

e Used to quantify the error and select h
e True likelihood computed at the sample points

Bandwidth selection criterion

e Compute pix_i; h) for each sample x_i
e Compare against the true pdf p(x_i)
e Select h that minimizes Mean Squared Error
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Parzen window

histogram vs true

e Histogram provides a coarse

density picture
e True N(1,4) pdf overlaid for sanity

check
e Supports the Gaussian-like
structure of Dataset 2
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Density

Dataset2 histogram vs true N(1.0, 4.0) pdf

1
mm Data histogram
—— True N(1.0, 4.0) pdf
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Parzen window
Plot: h vs MSE (Uniform & Gaussian)

Gaussian kernel: best h = 0.8

Gaussian kernel: h vs MSE

0.012

0.010 A

0.008 -

MSE

0.006 -

0.004 -

0.002 1

Semester Assignment

0.010 1
0.008 1
A 0.006 -
2
0.004 1

0.002 -

Uniform kernel: best h = 2.8

Uniform kernel: h vs MSE



#
#
#
#

Pattern Recognition &
Machine Learning

Parzen window

Implementation

e parzen_estimate_1d().
compute pix_eval) using (1 / (N:h)) - £ K((x_eval - x_n)/h)
e evaluate_parzen().
evaluate pix_i) at each sample x_i in the dataset
e true_normal_pdf_1d():
compute the reference N(u, var) pdf at the same points
e scan_bandwidths_parzen().
loop over h, compute estimated pdf, compare to true pdf, store MSE(h)
e plot_histogram_with_pdf(), plot_h_vs_error().
generate the final figures for reporting

Semester Assignment
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k-Nearest Neighbors Classifier
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k-NN for Pattern Recognition (Concept)

k-Nearest Neighbors (k-NN) is a non-parametric, instance-based classifier.

No explicit training phase

Classification based on local neighborhood
Suitable for low-dimensional pattern recognition
Decision boundaries adapt to data geometry

‘ In this assignment, k-NN is used for binary 2D pattern classification.

Semester Assignment
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Distance Measure

We use the Euclidean distance to measure similarity between patterns.

Distance definition

d(x;%;) =

M&
5
k.

]=1
e X querysample

e X training sample
e D-=2(2D patterns)
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Neighborhood Selection

For each test sample:

e Compute distances to all training samples
e Sort distances in ascending order
e Select the k nearest neighbors

Distance definition

N3 (x) = indices of the k smallest distances

This step defines the local region influencing the decision.

Semester Assignment
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Probabilistic Classification Rule

k-NN estimates class probabilities using neighbor frequencies.

Class probability estimate:

Ply=c|x)= = Z 1y =

e Probabilities sumto 1
e Supports any number of classes
e Finallabel:

y = argmax P(y = ¢ | x)

Semester Assignment
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Model Selection: Accuracy vs k

To select the optimal number of neighbors:

e Evaluate kin [1, 30]
e Compute classification accuracy on the test set

k-NN accuracy over k

0.750

Accuracy definition
1 Ar 0.675 A
Accuracy = N ; 1(9: = i) go.sso.

0.600 A

0.575 A

‘ Best performance achieved at k = 11 053]
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Decision Boundaries (Best k)

Using the optimal value k=11:

e Adense 2D grid is generated
e FEach grid point is classified using
k-NN

Observations:

e A Small k — noisy, unstable

boundaries

e Large k — smoother but biased
decisions

e Optimal k balances bias-variance
trade-off
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Implementation details

Core functions implemented:

o eucll).
Euclidean distance computation
e neighbors().
k nearest neighbors selection
e predict().
Probabilistic classification
e evaluate_over_R().
Accuracy evaluation for multiple k
e plot_decision_boundaries_2d().
2D decision region visualization
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Find the best Classifier

Semester Assignment



Pattern Recognition &
Machine Learning

Find the Best Classifier

Problem statement & dataset

Goal: maximize classification
accuracy and generalization

Semester Assignment
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N

Gi

Multiclass classification problem 5 classes
Input: high-dimensional (224) feature vectors
Labeled training set and unlabeled test set

HK HL HM
-00.088081 -00.1358 1.1888
-00.21821 0.063382 -00.35871
0.58943 0.219 0.8678
-00.31295 -00.36409 -00.043227
-00.30453 0.3072 1.0471
-00.082145  0.12385  0.23552
-00.1544 -00.27032/  0.19659
-00.30806 -01.1012  0.24436
-00.14617 -00.08408  0.31663
0.28557  0.10348 -00.12998
-00.15857  0.2686%9  0.11591

HN
0.59024
-00.039761
0.13884
1.1712
0.92149
0.39436
0.084938
-00.17289
0.591
1.1834
-00.42673

HO
0.13113
0.75732

1.0808

HP
0.94097
0.49834

-00.54227

-00.13544 -00.077792

0.73302
1.0049
0.93795
0.77315
0.33166
-00.20695
-00.20697

0.67078
-00.21823
0.64476
-00.13703
0.096781
0.42816
-00.50059

HQ

VLNV WEAERWOWNONPRE

N
N


#
#
#
#

Pattern Recognition &
Machine Learning

Methodology

Overview

e Preprocessing: scaling and PCA-based feature representations

e Models: distance-based, linear, kernel-based, and ensemble
classifiers

e Evaluation: stratified validation accuracy and confusion matrices

Experimental organization (Sequencer)

e Modular pipeline for preprocessing, training, and evaluation
e Systematic exploration of (preprocess, model) combinations
e Clear separation of:

o baseline investigation

o problem analysis

o tuning and final training

Semester Assignment

25


#
#
#
#

Pattern Recognition &
Machine Learning

Baseline validation results

e Multiple models evaluated under identical conditions

e Kernel-based and instance-based methods perform best

e Simpler probabilistic
models underperform

Part D - Validation accuracy across models and feature representations

scale

scale_pca_66
scale_pca_75
scale_pca_85

0.8 A

o
o

e SVM achieves the
highest val. accuracy
e k-NN & MLP follow

Validation accuracy

closely "
e Small performance
differences -

0.0 -
svm mlp knn f logreg linear_svm gnb adaboost
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Problem Investigation

e Strong diagonal dominance, but systematic

confusions remain
e Specific class pairs are repeatedly misclassified
e Overall accuracy hides structured class overlap

Classification report

precision
0.
.76
.92
.91
.75

Sw N

5

accuracy
macro avg
weighted avg

o O O O

(best config):
recall

94

0.86

.86

0.
.73
.93
.91
77

o O O O

96

0.86

.86

fl-score

0.
.75
.93
.91
.76
.86
.86
.86

O O O O O o o

95

support
354

344

351

343

357
1749
1749
1749

‘ “We are doing well — but not equally well
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for all classes”
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Confusion matrix - scale + svm
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Problem Investigation (PCA)

e Significant overlap between multiple classes

e No clear linear separation in low-dimensional
projections

e Indicates intrinsic difficulty of the dataset

PCA (2D) projection - class 2 vs class 5

° e class2
° e class 5

-4 -2 0 2 4 6
PC1

Semester Assignment

PC2

o

-2

—4

PCA (2D) projection - all classes

class 1
class 2
class 3
class 4
class 5

-4

PC1

Severe overlap between the two most confused
classes

Explains confusion patterns seen in the confusion
matrices
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Separability of classes.

0.007

0.006

0.005

0.004

score

d

0.003

0.002

0.001

0.000
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Separability between classes 2 and 5 (Worst features - strong overlap)

186
Feature index

e  Some features strongly discriminate
between classes

e  Several features exhibit almost
complete overlap

e Classification difficulty is feature-driven
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Most overlapping features - classes 2 vs 5
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Problem Investigation

Interpretation

e Performance ceiling is caused by data overlap
e Classifier choice is not the primary limitation
e Better models alone cannot resolve intrinsic ambiguity

Tuning Strategy

e Focus on the strongest baseline models
e Tune hyperparameters to reach the performance ceiling
e Expectincremental, not dramatic, improvements

Semester Assignment
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Random Forest (tuned)

e Moderate improvements in overall balance
e Marginally enhances class-wise metrics
e Does not resolve the ambiguity

Classification report:

precision recall fl-score support

1 0.92 0.95 0.93 354

2 0.72 0.69 0.71 344

3 0.90 0.90 0.90 351

4 0.87 0.87 0.87 343

5 0.74 0.73 0.73 357

accuracy 0.83 1749
macro avg 0.83 0.83 0.83 1749
weighted avg 0.83 0.83 0.83 1749
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Confusion matrix (tuned) - scale + rf
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MLP Classifier (tuned)

e Moderate improvements in overall balance
e Marginally enhances class-wise metrics
e Does not resolve the ambiguity

Classification report:

precision recall fl-score support

1 0.94 0.95 0.95 354

2 0.73 0.71 0.72 344

3 0.89 0.91 0.90 351

4 0.88 0.88 0.88 343

5 0.74 0.72 0.73 357

accuracy 0.84 1749
macro avg 0.83 0.84 0.83 1749
weighted avg 0.83 0.84 0.84 1749
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Confusion matrix (tuned) - scale + mlp
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kNN Classifier (tuned)

e Performance ranking remains largely unchanged

Confusion matrix (tuned) - scale_pca_85 + knn

e Recall for class 2 drops significantly
e Recallfor class 5 increases 300
250
Classification report:
precision recall fl-score support
1 0.91 0.98 0.94 354 200
2 0.81 0.56 0.66 344 E
3 0.91 0.91 0.91 351 f
4 0.93 0.88 0.90 343 IS
5 0.68 0.87 0.76 357 150
accuracy 0.84 1749
macro avg 0.85 0.84 0.84 1749 - 100
weighted avg 0.85 0.84 0.84 1749
50
0 1 2 3 4 Lo

Predicted label
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SVC (RBF) Classifier (tuned)

e Best trade-off between overall accuracy and class-wise
balance.

e Improved discrimination without excessive overfitting

e Confusion between classes 2 and 5 persists

Classification report:

precision recall fl-score support

1 0.94 0.96 0.95 354

2 0.76 0.73 0.75 344

3 0.92 0.93 0.93 351

4 0.91 0.91 0.91 343

5 0.75 0.77 0.76 357

accuracy 0.86 1749
macro avg 0.86 0.86 0.86 1749
weighted avg 0.86 0.86 0.86 1749

‘ “Nominated Model"
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True label

Confusion matrix (tuned) - scale + svm
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Final model & Conclusions

Final model

e Best-performing model: scale + SVM
e Balanced performance across all classes
e Used for final test-set prediction and submission

Conclusions

Systematic experimental methodology is critical
Visualization reveals limitations hidden by accuracy
Data characteristics define achievable performance
Further gains require better features or additional data
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